skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Richard"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    While distributed application-layer tracing is widely used for performance diagnosis in microservices, its coarse granularity at the service level limits its applicability towards detecting more fine-grained system level issues. To address this problem, cross-layer stitching of tracing information has been proposed. However, all existing cross-layer stitching approaches either require modification of the kernel or need updates in the application-layer tracing library to propagate stitching information, both of which add further complex modifications to existing tracing tools. This paper introduces Deepstitch, a deep learning based approach to stitch cross-layer tracing information without requiring any changes to existing application layer tracing tools. Deepstitch leverages a global view of a distributed application composed of multiple services and learns the global system call sequences across all services involved. This knowledge is then used to stitch system call sequences with service-level traces obtained from a deployed application. Our proof of concept experiments show that the proposed approach successfully maps application-level interaction into the system call sequences and can identify thread-level interactions. 
    more » « less